nents under the conditions employed in our experiments were $34,59,62,77$ and 95 seconds. The component with the shortest retention time is ketobicyclo[2.2.1]heptane, and the other two major products with retention times of 59 and 62 seconds are believed to be the 1 -nitro- and 7 -nitrobicyclo[2.2.1]heptanes. The vapor chromatogram showed that these latter two components were present in almost equal concentrations. The retention time for the alkali-soluble 2-nitrobicyclo[2.2.1]heptane under conditions identical to those employed above was 58 seconds. The minor components of the alkali-insoluble product were eluted at retention times of 77 and 95 seconds. In addition to the carbonyl and nitro bands found in the infrared spectrum of this sample a weak doublet at 2.83 and 2.87μ indicated the presence of some hydroxy compound.

Nitration of Decahydronaphthalene.-A 207-g. (1.5 moles) sample of decahydronaphthalene ($n^{2 \overline{ }} \mathrm{D} 1.4694$) was charged to a 1-liter stainless steel autoclave, pressured to 300 p.s.i.g. and heated to 120°. At this point 34.5 g . (0.75 mole) of nitrogen dioxide dissolved in 100 ml . of carbon tetrachloride $\left(0-5^{\circ}\right)$ was fed into the reaction zone by means of a Milton Roy feed pump. After a total reaction period of 1 hour (50 minutes feed and 10 minutes cook), the autoclave was cooled to room temperature. The reaction mixture was washed first with 150 ml . of water and then extracted with a 5% sodium hydroxide solution for 18 hours. The alkaliinsoluble portion was washed with water and dried over anhydrous magnesium sulfate. Distillation of the dried solution at reduced pressure yieldad 122.4 g . (59% recovery) of
decahydronaphthalene, b.p. 70° (14 mm .), 32.1 g . of higherboiling material ($n^{25} \mathrm{D}$ 1.4929-1.5010), and a pot residue weighing 16.7 g . The $32.1-\mathrm{g}$. portion of the distillate was extracted by 130 ml . of $10-15 \%$ sodium methoxide for 2.5 hours. The mixture then was diluted with 200 ml . of water, extracted by four $75-\mathrm{ml}$. portions of diethyl ether, and dried over anhydrous magnesium sulfate. Distillation of the alkaliinsoluble material yielded 10 g . of 9 -nitrodecahydronaphthalene, b.p. $60-65^{\circ}(0.2 \mathrm{~mm}$.). This amount of product represents a 9.0% yield based on the amount of decahydronaphthalene consumed. The infrared spectrum of the product coincided with that of 9 -nitrodecahydronaphthalene which was reported previously, ${ }^{14}$. Also, the refractive index of the product ($n^{25} \mathrm{D}$ 1.4925) was in excellent agreement with that reported in the literature. ${ }^{14-16}$

Acknowledgments.-The author wishes to thank Mr. L. J. Lohr for the interpretation of the infrared spectra and the vapor phase chromatographic work, and Prof. J. D. Roberts for supplying infrared spectra of authentic samples of 2 -nitronorbornane and norcamphor.
(14) D. K. Brayn, Dissertation, Ohio State University. 1954.
(15) S. Nametkin and D. Madaev-Ssichev, Ber., 59B, 370 (1926)
(16) W. Huickel and M. Biohm, Ann., 502, 114 (1933).

Gibbstown, N. J.
[Contribution from the Organic Research Laboratories of the U. S. Vitamin and Pharmaceutical Corp.]

α-Hydroxy Amides and Related Compounds

By Seymour L. Shapiro, Ira M. Rose and Louis Freedman
Received May 21, 1959

A series of α-hydroxyamides and the corresponding alkyl carbonate esters of type I have been synthesized and examined for anticonvulsant activity. The best activity has been noted with the N-aralkyl glycolamides. The spectra of I , where R is phenyl and substituted phenyl, have been determined and compared with the analogous acetanilides.

While a wide variety of recent studies of carboxylicacid amides hasshown pharmacological activity, ${ }^{1}$ there has been relatively little systematic exploration 2 of the amides of α-hydroxy acids. Studies ${ }^{3}$ of such amides, and derivatives of these compounds of the type I are herein described.

$$
\begin{array}{lll}
\mathrm{R}=\text { alkyl, aralkyl, aryl } & \mathrm{R}_{3}= & \text { hydrogen } \\
\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5} & & -\mathrm{COOCH}_{3} \\
& & -\mathrm{COOC}_{2} \mathrm{H}_{5} \\
& & (\mathrm{M}) \\
& -\mathrm{COOC}_{3} \mathrm{H}_{7}-n & \text { (P) } \\
& -\mathrm{COO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl} & \text { (CE) } \\
& -\mathrm{COO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl} & (\mathrm{CP})
\end{array}
$$

Interest in the structures $\mathrm{I}\left(\mathrm{R}_{3}=\mathrm{H}\right)$ was indicated from the noted therapeutic usefulness of the

[^0]related acetanilides ${ }^{4}$ and the potential for conversion of I to substituted oxazolidinediones. ${ }^{5}$ In turn, the variant of I employing the carbonate esters $\left(R_{3}\right.$, other than $\left.H\right)$, was introduced to afford more lipopliilic structures of varying hydrolytic stability. ${ }^{6}$ In addition, the carbonate esters were required as intermediates for conversion to carbamates.

The compounds prepared have been described in Table I. Some variants of I are detailed in the Experimental section.

Most of the amides ($\mathrm{I}, \mathrm{R}_{3}=\mathrm{H}$) were prepared by ammonolysis of the ethyl esters of the α hydroxy acids (method A).

This is a relatively complex reaction, responsive to steric factors and the basicity of the amine, and is promoted by the α-hydroxy group in the acylating
(4) A. Burger, "Medicinal Chemistry," Interscience Publishers, Inc., New York, N. Y., 1951, pp. 196-199.
(5) S. L. Shapiro, I. M. Rose, F. C. Testa, E. Roskin and L. Freedman, This Journal, 81, Dec. 20, (1959).
(6) The order of decreasing hydrolytic stability would be estimated as $\mathrm{R}:=\mathrm{CE}, \mathrm{M}, \mathrm{E}, \mathrm{P}$; see (a) K. H. Vogel and J. C. Warner, ibid., 75, 6072 (1953); (b) A. A. Colon, K. H. Vogel, R. B. Carlin and J. C. Warner, ibid., 75, 6075 (1953).

Table I (Continued)

No. ${ }^{\text {a }}$	R
58	4- $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4}-$
59	$4-\mathrm{HOOCC}_{6} \mathrm{H}_{4}-$
60	$4-\mathrm{HOOCC} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}$
61	$4-\mathrm{HOOCC}_{6} \mathrm{H}_{4}{ }^{-}$
62	$4-\mathrm{HOOCC}_{6} \mathrm{H}_{4}{ }^{-}$
$63^{a_{9}}$	$\mathrm{C}_{10} \mathrm{H}_{-}{ }^{-}$
64	$\mathrm{C}_{10} \mathrm{H}_{7_{-}}{ }^{\text {- }}$
65	
66	\downarrow
67	m
68	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}-$
69	n
70	\bigcirc
71	2-Pyridy1-

$72^{a} 10$	$\mathrm{C}_{3} \mathrm{H}_{5}{ }^{\text {- }}$
73	$\mathrm{C}_{3} \mathrm{H}_{5}{ }^{-}$
$74^{a_{11}}$	$i-\mathrm{C}_{4} \mathrm{H}_{9}{ }^{-}$
75	i - $\mathrm{C}_{4} \mathrm{H}_{9}-$
76	$\mathrm{C}_{8} \mathrm{H}_{1 i^{-}}$
77	$\mathrm{C}_{8} \mathrm{H}_{17}{ }^{\text {a }}$
$78{ }^{\text {a } 12}$	$\mathrm{C}_{6} \mathrm{H}_{11}{ }^{4}$
79	$\mathrm{C}_{6} \mathrm{H}_{11}{ }^{\text {a }}$
$80^{a^{13}}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-$
81	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-$
82	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$ -
83	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-$
84	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2}-$
85	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2}-$
86	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-$
87	2 - $\mathrm{ClCl}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$
88	$4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$
89	$4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$
$90^{11_{14}}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCH}_{3}{ }^{-}$
92	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCH}_{3}-$
93	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCH}_{3}-$
$94^{a_{15}}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$
95	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$
96	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$
97	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{-}$
98	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-$
99	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}{ }^{-h}$
100	$\mathrm{C}_{10} \mathrm{H}_{23} \mathrm{O}_{2}{ }^{-h}$
101	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CH}_{2}$
102	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CHI}-$
$103{ }^{a_{16}}$	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}$
104	$\mathrm{C}_{6} \mathrm{H}_{5}-$
105	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}$
$106^{\text {a }} 17$	$2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}$
107	$2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-$
108	$3-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-$
$109^{a_{18}}$	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-$
110	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-$
111	2,4-diCH3 $\mathrm{C}_{6} \mathrm{H}_{3}-$
112	$2,4-\mathrm{diCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-$
113	$2,5-\mathrm{diCH}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ -
114	$2,6-\mathrm{diCH}_{3} \mathrm{C}_{6} \mathrm{H}_{3}-$
115	$2,6-\mathrm{diCH}_{3} \mathrm{C}_{6} \mathrm{H}_{3}-$
116	$4-\mathrm{FC}_{6} \mathrm{H}_{4}{ }^{-}$
17	$4-\mathrm{FC}_{6} \mathrm{H}_{4}-$
118	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}-$
19	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}{ }^{-}$

R3		RS ${ }^{\text {c }}$	$\underset{\%}{\text { Yield, } d}$	Formula	$\begin{aligned} & \text { Car } \\ & \text { Calcar } \end{aligned}$	rbon Found	$\begin{aligned} & \text {-Analys } \\ & \text { Halcd. } \\ & \text { Calct. } \end{aligned}$	ses, e ogen Found	$\begin{aligned} & \text { Nitrogen } \\ & \text { Calcd. Found } \end{aligned}$	
E	105-106	A	90	$\mathrm{C}_{18} \mathrm{H}_{1} ; \mathrm{NO}_{5}$	58.4	58.4	6.4	6.5		
H	240-241	E	70	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}^{-} \mathrm{O}_{4}$	55.4	55.4	4.7	4.5	7.2	7.0
M	229-230	B	70	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{6}$	52.2	52.1	4.4	4.6	5.5	5.3
E	207-209	F	31	$\mathrm{C}_{12} \mathrm{H}_{13}-\mathrm{NO}_{8}$	53.9	54.0	4.9	4.8	5.2	4.9
CE	200-203	B	84	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{-} \mathrm{NO}_{8}$	47.8	48.1	4.0	4.3	4.6	4.7
H	126-128	.	44							
E	134-135	A	82	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$	65.9	66.0	5.5	5.3		
H	112-118 (0.07)		74	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{CO}_{2}$	67.0	66.7	7.3	7.0	7.8	7.7
H	184-188	G	45	$\mathrm{C}_{1} ; \mathrm{H}_{15} \mathrm{~K}_{2} \mathrm{CO}_{2} \mathrm{O}_{4}$	65.0	64.8	5.8	5.8	8.9	9.1
E	182-183	B	96	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{No}_{2} \mathrm{O}_{8}$	60.3	60.1	5.7	5.6	6.1	6.4
H	130-134 (0.1)		72	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$	55.1	55.1	10.4	10.1	16.1	15.8
H	89-92 (0.08)		63	$\mathrm{C}_{7} \mathrm{H}_{14}-入_{2} \mathrm{O}_{2}$	53.1	33.4	8.9	9.1		
H	92-93	H	55	$\mathrm{C}_{8} \mathrm{H}_{1} \mathrm{~F}_{-} \mathrm{C}_{3} \mathrm{O}_{2}$					22.4	21.8
H	133-134	F	17	$\mathrm{C}_{7} \mathrm{H}_{8}-\mathrm{N}_{2} \mathrm{O}_{2}$	55.3	55.2	5.3	5.3		
$\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$										
H	98 (0.04)	87								
E	45	D	75	$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{4}$	53.7	53.9	7.5	7.5	7.0	6.9
H	43-44	D	91							
E	81	I	43	$\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{4}$	55.3	55.6	8.8	8.6	6.5	6.3
H	135 (0.04)		91	$\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{2}$	65.6	65.8	11.5	11.7	7.0	6.9
E	110 (0.03)		73	$\mathrm{C}_{14} \mathrm{H}_{2 \mathrm{~L}} \mathrm{NO}_{4}$	61.5	62.1	10.0	9.8	5.1	5.1
H	60	D	50							
E	97-98	I	45	$\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4}$	59.2	59.5	8.7	8.7		
H	47-48	D	61							
${ }^{r}$	101-103	A	43	$\mathrm{C}_{1} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$	68.4	68.3	6.1	5.9		
M	92-93	A	47	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4}$	60.8	60.8	6.4	6.2		
E	83-84	A	68	$\mathrm{C}_{13} \mathrm{H}_{17}-\mathrm{NO}_{4}$	62.1	62.0	6.8	6.8		
P	66-67	A	53	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}$	63.4	63.3	7.2	7.2		
CE	93-94	A	76	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClNO}_{4}$	54.6	54.9	5.7	6.0		
CP	78-79	A	78	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClNO}_{4}$	56.1	56.3	6.1	6.5		
H	56-60	A	60	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}_{2}$	56.2	56.7	5.7	5.9	6.6	7.0
H	90-92	A	62	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}_{2}$	56.2	55.8	5.7	5.5	6.6	6.9
E	86-87	A	84	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClNO}_{4}$	54.6	54.8	5.7	5.5	4.9	4.8
H	94-95	A	65							
r	135-140	A	57	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$	69.2	69.5	6.5	6.6	9.0	9.1
E	97	-	58	$\mathrm{C}_{14} \mathrm{H}_{1} \mathrm{NO}_{4}$	63.4	63.5	7.2	7.3	5. 3	5.1
H	88-89	A	89							
${ }^{r}$	123-124	A	61	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$	69.2	69.3	6.5	6.5	9.0	9.2
M	100-101	A	75	$\mathrm{C}_{13} \mathrm{H}_{1} ; \mathrm{NO}_{4}$	62.1	62.3	6.8	6.7		
E	53	A	43	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}$	63.4	63.5	7.2	7.3	5.3	5.1
CP	63-64	A	62	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClN}^{-}$	57.4	57.8	6.4	6.7		
H	69-72	A	80	$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4}$	61.6	61.8	7.6	7.7	5.5	5.8
E	71-72	A	58	$\mathrm{C}_{15} \mathrm{H}_{23}-\mathrm{NO}_{6}$	59.1	59.4	7.1	7.4		
H	85-86	D	81	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$	75.3	75.1	6.7	6.4	B.;	3. 8
E	105-106	A	86	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4}$	69.7	69.9	6.5	6.i)		
H	56-57	D	54							
M	100	A	54	$\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{4}$	59.2	59.4	\%. 5	5.7		
E	83-84	I	78	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{4}$	60.8	61.0	6.4	1.3	5.9	5.9
H	69-72	D	63							
E	116-117	A	58	$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4}$	62.1	62.1	6.8	7.0		
H	130 (0.02)		78	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$	67.0	66.6	7.3	7.3	7.8	7.7
H	98-103	A	54							
E	110-111	A	77	$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4}$	62.1	62.5	6.8	6.8		
H	146 (0.05)		90	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$	68.4	67.9	7.8	8.1	7.3	7.2
E	119-120	A	89	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}$	63.4	63.2	7.2	7.0		
H	$150(0.03)$		89	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$					7.3	6.9
H	139-140	B	62	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$	68.4	68.7	7.8	8.0	7. 3	7.0
E	122-123	A	76	$\mathrm{C}_{14} \mathrm{H}_{1} \mathrm{NO}_{4}$	63.4	63.9	7.2	7.4		
H	85-88	J	24	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{FNO}_{2}$	59.0	59.0	5.5	5.7	7.7	7.5
E	83-84	A	72	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{FNO}_{4}$	56.5	56.4	5.5	5.7		
H	118-134 (0.02)		48	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{2}$	54.2	54.2	5.1	5.2	7.0	7.1
E	89-90	I	72	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClNO}_{4}$	53.0	53.2	5.2	5.1		

Table I (Continued)

${ }^{a}$ Compounds previously reported: ${ }^{a 1} \mathrm{O}$. C. Dermer and I. King, J. Org. Chem., 8, 168 (1943), m.p. 103-104 ${ }^{\circ}{ }^{a 2} \mathrm{H}$. K. Iwamoto and deC. Farson, J. Am. Pharm. Assoc., Sci. Ed., 35, $50(1946)$, m. p. 92°; as' C. A. Bischoff and P. Walden, Ann., 279, 45 (1894), m.p. 67°; a4 ibid., m.p. 143°; ${ }^{5} \Lambda^{\prime}{ }^{\prime}$. Löfgren and I. Fischer, Svensk Kem. Tidskr., 58, 206 (1946), m.p. $90-91^{\circ}$; ${ }^{a 6}$ "Beilstein," Vol. XII, p. 648 , m.p. 180° '; ${ }_{a 7}$ ', Beilstein,', ' Vol. VIII, p. 172, m.p. 101°; ${ }^{\circ}{ }^{8}$ '"Beilstein,"' Vol. XIII, p. 173, m.p. 153°; ${ }^{a}$ "'Beilstein," Vol. XII, p. 1246, m.p. 128°; ${ }^{a 10}$ W. P. Ratchford and C. H. Fisher, J. Org. Chem., 15,317 (1950), b.p. $86-87^{\circ}(0.2 \mathrm{~mm}$.); a 11 ibid., b.p. $104-106^{\circ}$ (0.1 mm .), m.p. $42-48^{\circ}$; ${ }^{12}$ ibid., m.p. $60-$ 60.5°; a ${ }^{13}$ ibid., m.p. $47.5-48.5^{\circ}$; ${ }^{a 14}$ M. L. Fein and E. M. Filachione, This Journal, 75, '2097 (1953), m.p. 92-94 ${ }^{\circ}$;
 Vol. XII, p. 819, m.p. 72°; a ${ }^{18}$ '"Beilstein," 'Vol. XII, p. 963 , m.p. 102-103 ${ }^{\circ}$, m.p. 109°; ${ }^{a 19}$ ' 'Beilstein,'" Vol. XIII, p. 491, m.p. 106.5°; ${ }^{20}$ "'Beilstein," Vol. XIII, p. 491, m.p. 117.5^{-} 118°; a21 "'Beilstein," Vol. XII, p. 1246, m.p. 108°; ${ }^{2} 22$ R. F. Rekker and W. T. Nauta, Rec. trav. chim., 70, $2 \dot{4}$ (1951), m.p. 135°; ${ }^{23}$ "Beilstein," Vol. XII, p. 820 , m.p. 88°; ${ }_{a 24}$ " 'Beilstein,"' Vol. XII, p. 965, m.p. 1,32-1330'; a 25 "'Beilstein," Vol. XIII, p. 493, m.p. 151-152 ${ }^{\circ}{ }^{5}$ Melting points were determined on a Fisher-Johns melting point block and are not corrected. ${ }^{\circ} \mathrm{RS}=$ recrystallizing solvent; $\mathrm{A}=$ ethylacetate-hexane; $\mathrm{B}=$ ethylacetate; $\mathrm{C}=$ ethyl acetate ether; $\mathrm{D}=$ ether; $\mathrm{E}=$ water; $\mathrm{F}=$ ethyl acetate-benzene; $\mathrm{G}=$ ethanol; $\mathrm{H}=$ acetonitrile; $\mathrm{I}=$ hexane; $\mathrm{J}=$ etherhexane; $\mathrm{K}=$ ethanol-hexane; $\mathrm{L}=$ ethanol-water; $\mathrm{M}=$ ethanol-ether; $\mathrm{N}=$ benzene-hexane. ${ }^{d}$ Yields are expressed as percentage of recrystallized or distilled product. Anatyses are by Weiler and Strauss, Oxford, England; el not obtained analytically pure. ${ }^{\prime} \mathrm{C}_{3} \mathrm{H}_{5}-$ is allyl. ${ }^{\circ} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ - is furfuryl. ${ }^{n} \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}$ - is 3,4 -dimethoxyphenethyl. ${ }^{i} \mathrm{R}_{3}$ is N, N -tetramethyleneamido-. ${ }^{i} \mathrm{C}_{10} \mathrm{H}_{7}$ is α-naphthyl. ${ }^{k}-\mathrm{NHR}$ group is replaced by N-nethylbenzyl. ${ }^{2}$ Product is the bisamide from methylenedianiline. ${ }^{m}$ Bis-derivative, $\mathrm{R}_{3}=$ $\mathrm{OCOC}_{2} \mathrm{H}_{5}$, of compound immediately above. $\quad n-\mathrm{NHR}$ group is replaced by N-methylpiperazyl. o The amine reacted is β-N-piperazylethylamine. It is likely that the product reflects amidation by the primary amine group. ${ }^{p} \mathrm{C}_{8} \mathrm{H}_{1 T}$ is 2 -ethylhexyl. ${ }^{\circ} \mathrm{C}_{6} \mathrm{H}_{11^{-}}$is cyclohexyl. ${ }^{2}$ Phenylurethan of compound immediately above. Methiodide of compound immediately above.
reactant as a result of stabilization of the proposed transition state II by hydrogen bonding. ${ }^{7}$ While the formed ethanol catalyzes the reaction, ${ }^{8}$ it also lowers the boiling point of the reactant mixture, and it proved desirable to remove it as the reaction proceeded. This permitted higher reaction temperatures and was a convenient index of completion of the reaction.

With the amine p-aminobenzoic acid, good results were noted when its basicity was increased ${ }^{9}$ by using the sodium salt as the reactant. ${ }^{10}$ Some of the amides were obtained through dehydration of the corresponding amine salts by reflux with benzene or xylene (method B), ,1,12 or reaction of the amine with lactide or polyglycolide (method C).

The carbonate esters I (R_{3}, other than H) were prepared by treating the α-hydroxyamide with the alkyl chlorocarbonate in pyridine-acetonitrile. Acetonitrile was a particularly convenient solvent since it solubilized the formed pyridine hydrochloride.

While the carbonate esters were obtained readily for all variants of R_{3}, the comparable compounds
(7) See S. L. Shapiro, I. M. Rose and L. Freedman, This Journal, 80, 6065 (1958), for discussion of the amidation reaction.
(8) G. R. Wolf, J. G. Miller and A. R. Day, ibid., 78, 4372 (1956)
(9) P. H. Bell and R. O. Roblin, Jr., ibid., 64, 2905 (1942).
(10) C. van der Stelt, A. J. Zwart. Voorspuij and W. T. Nauta, Arzneimiltel-Forsch., 4, 544 (1954).
(11) The mechanism of this type of amidation has not been convincingly rationalized. It is of interest that it is not as dependent on base strength or steric factors in the amine, as the aminolysis of esters. (12) I. F. Fieser and J. E. Jones, Org. Syntheses, 12, 66 (1950).
from the α-liyclroxy isobutyramides did not form, presumably because of the relative inactivity of the t-hydroxyl group to the acylation reaction ${ }^{13}$ in pyridine.

The carbonate esters were generally solids, and it is of interest that although these compounds were readily responsive to pyrolysis to the oxazolidinediones, ${ }^{5}$ a liquid carbonate (Table I, compound 77) could be distilled unchanged.

The ultraviolet absorption spectra of some 70 of the compounds in this series have been compared with those noted for the corresponding acetanilides ${ }^{14}$ in Table II.

The spectra permit an assessment of the replacement of hydrogens on the methyl group of acetanilide by a hydroxy group, a hydroxy group and one methyl group, and a hydroxy and two metliyl groups, respectively, in the classes of connpounds evaluated. Ungnade ${ }^{14}$ has shown that replacement of the three hydrogens by three methyl groups (pivalanilide) results in hypo- and hypsochromic effects. ω-Trifluoroacetanilide shows batho- and hypochromic effects. In turn, replacement with one methyl group (propionanilide) vields essentially the same spectrum as acetanilide.

The availability of many of the ethyl carbonate esters of the α-hydroxyamides permitted an assessment of the role of hydroxyl hydrogen, as well as the hydroxy group in the noted spectra.

In general, spectra reported in this series follow trends noted with the acetanilides, ${ }^{14}$ but some of the interesting distinctions will be described in more detail.

The structural feature which was of principal interest was the characterization of the hydrogen bonding effects with the α-hydroxyamide.

The structure of acetanilide ${ }^{15}$ is planar, and other studies ${ }^{16,17}$ have shown that the anide hydrogen in simple amides is trans to the carbonyl carbon. These factors suggest the structural model for the α-hydroxy amides as III, $\mathrm{R}_{3}=\mathrm{H}$.

III

The hydrogen bonding as shown between the amide hydrogen atom and the OR_{3} group would require the proper conformation of the groups attached to the acetaniilide methyl group.

Ungnade had noted that with selected o-substituted acetanilides the acetamino group is twisted out of the plane of the ring with resultant decrease in absorption intensity and hypochromic shifts.

In Table II the carbonate esters of the o-substituted anilides of the α-hydroxy acids show virtually the same spectra as the acetanilides (see 2 -$\left.\mathrm{CH}_{3}-, 2-\mathrm{Cl}-, 2-\mathrm{CH}_{3} \mathrm{O}-\right)$, while the α-hydroxy-
(13) (a) J. A. Campbell, J. Org. Chem., 22, 1259 (1957); (b) K. B. Wiberg and T. M. Shryne, This Journal, 77, 2774 (1955); (c) S. Nakanishi, T. C. Myers and E. V. Jensen, ibid., 77, 5033 (1955); (d) J. L. Hales, J. I. Jones and W. Kynaston, J. Chem. Soc., 618 (1957); (e) H. K. Hall, Jr., This Journal, 79, 5439 (1957); (f) W. Gerrard and F. Schild, Chemistry \& Industry, 1232 (1954).
(14) H. E. Ungnade, This Jouknal, 76, 5133 (1954).
(15) C. J, Brown and D. E. C. Corbridge, Acta Cryst, 7, 711 (1954).
(16) J. E. Worsham, Jr., and M. E. Hobbs, This Journal, 76, 20G; (1954).
(17) A. Kotera, S. Shibata and K. Sone, ibid., 77, 6183 (19:5).

Table II

$\mathrm{R}_{3}{ }^{6}$	Y	Ultraviolet Absorption Spectra ${ }^{a}$							
		$\begin{aligned} & \mathrm{R}_{1}, \mathrm{R}_{2} \\ & \lambda_{\max }, \mathrm{m}_{\mu} \end{aligned}$	$=\mathrm{H}$	$\begin{array}{r} \mathrm{R}_{1}{ }^{\prime}=\mathrm{C} \\ \cdot \lambda \max , \mathrm{~m} \mu \end{array}$	$\underset{\epsilon \times 10^{-3}}{\mathrm{R}_{2}}=\underset{\mathrm{H}}{ }$	$\underset{\lambda}{\mathrm{R}_{1}, \mathrm{R}_{2}} \underset{\mathrm{max}}{\mathrm{~m}}$	$={ }_{6} \mathrm{CH}_{3} \times 10^{-8}$	$\lambda_{\text {max }}{ }^{c}$ m μ	6×10^{-3}
H	H	241	13.2	241	12.9	241	13.4	242	14.4
E	H	240	13.9	242	13.7				
H	$2-\mathrm{CH}_{3}-$	235	7.4	237	7.8			230	6.3
E	$2-\mathrm{CH}_{3}-$	229	6.3	227	6.5				
H	$3-\mathrm{CH}_{3}-$			243	13.0	245	13.7	245	14.0
H	$4-\mathrm{CH}_{3}-$	244	14.1	243	14.4	243	15.0	245	14.85
E	$4-\mathrm{CH}_{3}-$	241	14.5	245	14.9				
H	2,4-di- $\mathrm{CH}_{3}-$			238	7.5				
E	2,4-di- $\mathrm{CH}_{3}-$			225^{d}	7.3				
H	$2,5-\mathrm{di}-\mathrm{CH}_{3}-$			241	8.1				
H	$2,6-\mathrm{di}-\mathrm{CH}_{3}-$	-		e					
H	4-F	238	12.4	237	13.0			240	13.1
E	4-F	238	12.4	239	12.7				
H	2 Cl	243	12.6	244	12.7			240	10.4
E	$2-\mathrm{Cl}$	240	10.6	238	8.8				
H	$4-\mathrm{Cl}$	247	18.2	247	17.8			249	17.8
M	$4-\mathrm{Cl}$	247	17.8						
E	$4-\mathrm{Cl}$	247	18.5						
P	$4-\mathrm{Cl}$	247	18.5						
CE	$4-\mathrm{Cl}$	247	19.7						
CP	$4-\mathrm{Cl}$	247	19.0						
H	$4-\mathrm{Br}$	250	19.0	250	20.6			252	18.7
E	$4-\mathrm{Br}$	251	20.8	250	18.8				
H	$2-\mathrm{CH}_{3} \mathrm{O}-$	245	13.0	245	13.2	245	14.4	244	10.4
		282	5.1	282	5.5	282	5.7	280	4.55
E	$2 \cdot \mathrm{CH}_{3} \mathrm{O}-$			244	11.5				
				282	5.5				
H	$4-\mathrm{CH}_{3} \mathrm{O}-$	248	14.8	249	14.6	249	13.9	249	14.9
E	$4-\mathrm{CH}_{5} \mathrm{O}-$	244	13.0	249	14.9				
H	$2-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-$	243	14.4	245	13.9	244	15.0		
		282	5.4	282	4.7	283	5.9		
E	$2-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-$	244	11.9	244	11.7				
		28.	5.1	283	5.1				
H	$3-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-$	244	11.7	245	11.0	244	11.9	245	11.7^{f}
		280	3.3	281	3.0	281	3.6	280	3.15
E	$3-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-$			245	11.1				
				281	3.2				
H	$4-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-$	249	13.7	249	16.0	249	14.3		
E	$4-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-$	250	15.1	251	15.4				
H	$4-\mathrm{HOOC}-$	265	21.2	267	21.9			270	21.2
H	$4-\mathrm{NO}_{2}$			310	13.4			316	11.4

${ }^{a}$ The spectra were determined in methanol and were established using a Beckman recording spectrophotometer, model DK. The following spectra were established for comparison compounds (name, λ max, $m \mu$ (methanol), $\epsilon \times 10^{-3}$, respectively); formanilide, 242, 13.3; o-chloroformanilide, $243,12.2$; propionanilide, $243,14.1$. ${ }^{\circ}$ The abbreviations for R_{3} have been detailed in Table I. \quad The spectra (ethanol) for the corresponding acetanilides have been drawn from ref. 14 and are shown in the Table to permit more ready comparison. d Shoulder. ©Non-specific absorption only. f The data shown for connparison are for m-methoxyacetanilide from ref. 14.
acetanilides each reflect a spectral pattern which is bathochromic, and hyperchromic relative to the acetanilide, with the order of this effect being $\mathrm{CH}_{3}-$ $>\mathrm{Cl}->\mathrm{CH}_{3} \mathrm{O}$-. In turn, with the 2,6 -dimethylaniline derivative, only non-specific absorption is obtained.

These observations suggest that in the absence of a stabilizing influence the spectra reflect some measure of free rotation ${ }^{16}$ about the nitrogen with accompanying interaction between the amido hydrogen and the o-substituent. This is the case with the acetanilides and the carbonate esters in this series. Alternatively, with the α-hydroxy
anilides, conformational stabilization through hydrogen bonding on the side opposite to that of the o-substituent as shown (IV) would account for the noted effects. The alternate possibility for a hy-

drogen-bonded form involving juncture of the hydroxyl hydrogen to the electron pair of the nitrogen would be reflected by spectra which would show
considerably less benzenoid character, and is unlikely.

When the hydroxyl group is derivatized to form the carbonate esters, the electron density on the hydroxy oxygen is decreased through forns such as V and hydrogen bonding as shown for IV apparently does not make significant contributions in V. ${ }^{18}$

Forbes and Sheratte ${ }^{19}$ have questioned Ungnade's ${ }^{14}$ contention that the o-methoxy substituent contributes no steric effect in the spectra of the acetanilides. Our data with o-methoxy and o ethoxy substituents are in agreement with Forbes' position in that steric effects are noted with con1pounds of the type V, although not with those of the preferred orientation of type IV.

However, the fact that order of stabilization ($\Delta \lambda_{\max }[\alpha$-hydroxyacetanilide - acetanilide $]$) is $\mathrm{CH}_{3}>\mathrm{Cl}>-\mathrm{OCH}_{3}$ would suggest some measure of contribution from forms for V similar to those proposed by Ungnade, which are shown as VI.

These data with the o-substituents tend to ennphasize the relative hypochromicity of the m alkoxy substituents in this series and in spectra tabulated by others. ${ }^{14,19}$ This is emphasized in that the secondary band (at about $282 \mathrm{~m} \mu$) for the m-alkoxy derivatives is also more hypochromic than the secondary band of the corresponding o alkoxy compounds. Since m-alkoxy substituents have positive σ-values in contrast to the strongly negative σ-values of p-alkoxy derivatives, ${ }^{20}$ the noted spectral effects with the m-alkoxy derivatives in this series may be a result of drainage of ring electron density by these groups through the inductive effect with consequent lesser population of resonance forms contributing to the extinction coefficient.

No clear-cut effects could be ascribed to variations of R_{1} and R_{2} as hydrogen and/or methy1 ${ }^{21}$ within the connpounds of this series, and the compounds $\mathrm{V}(\mathrm{Y}=\mathrm{H})$ paralleled the spectrun1 of trimethylacetanilide. ${ }^{14}$

Pharmacology.-Alnost all of the componncls described in Table I were evaluated for their anticonvulsant action in mice and the results have been described in Table III.

With respect to the anticonvulsant effect, sonne interesting generalizations niay be made relating structure to activity. Of the carbonate esters

[^1]Table III
Pharmacological Activity of Compounds

$4+$ anticonvulsant activity ${ }^{\text {a }}$, ${ }^{\text {a }}$	$\begin{gathered} 3 / 500,5 / 200,9 / 250,11 / 300,16 / 750 \\ 20 / 350,39 / 225,89 / 400,152 / 750 \end{gathered}$
$3+$ anticonvulsant activity ${ }^{\text {a }}$	25/100, 3t/800, 72/250, 94/750, 111/850, 113/800, 127/150, 149/300, 162/225, 170/150
Potentiation of Evipal sleeping time ${ }^{b}$	3, 9, 16, 18
Reduction in motor activity ${ }^{\text {c }}$	$\begin{gathered} 70 />1000 / 18 \% / 10 ; 9+/ 750 / 20 \% / \\ 100 ; 120 / 450 / 23 \% / 100 \end{gathered}$

${ }^{\text {a }}$ For method of testing see S. L. Shapiro, I. M. Rose, F. Roskin and L. Freedman, This Jocrnal, 80, 1648 (1958); also, S. L. Shapiro, V. A. Parrino and L. Freedman, ibid., 81, 3996 (1959). The data record Table I compound number $/ \mathrm{LD}_{\text {min }}$ in $\mathrm{mg} . / \mathrm{kg}$. ${ }^{\text {b }}$ The method of testing is described in footnote a. The compounds listed showed $50-100 \%$ potentiation of the Evipal slecping time when evaluated at $1 / 3$ of the $L D_{\text {min. }}$. For method of testing see footnote a. The data record compound number $/ L D_{\text {min }}$ mg. $/ \mathrm{kg}$. $/ \%$ reduction in motor activity $/$ test dose (subcutaneous) in mg./kg. ${ }^{d}$ The known anticonvulsants phenobarbital and trimethadione show $4+$ activity in this test.
showing a good response (compounds $5,20,25$, 127), 5 and 20 are relatable to active hydroxyamides 3 and 16 , respectively. Aniong the hydroxyamides, all the $4+$ compounds were derived froni aralkylamides but one (compound 39). Witl the substituted anilides, the following substituents in the ring were associated with good to moderate activity: halogen (compounds 34, 30), 127), dimethyl (compounds 111, 113) and methoxy (compound 162). The $\mathrm{R}_{1}, \mathrm{R}_{2}$ variants showed the following number of active compounds: R_{1}, $\mathrm{R}_{2}=\mathrm{H}, 9 ; \mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}, 6 ; \mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{CH}_{3}$, $3 ; \mathrm{R}_{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}_{2}=\mathrm{H}, 1$.

In this series it appears that the best results are to be found with N-aralkyl glycolanides.

Experimental ${ }^{22}$

Preparation of Amides (Method A).--A mixture of 0.1 mole of amine and 0.105 mole of the ethyl ester of the α-hydroxy acid was heated until the internail temperature of the refluxing mixture had dropped approximately $20-30^{\circ}$. The formed ethanol was removed and measured. If the quantity of ethanol collected did not approach theoretical, reflux and removal of formed ethanol was repeated. The residue was recrystallized or distilled to tield the product.

Method B.-I mixture of 0.1 mole of 70% glycolic acid (or 85% lactic acid), 0.11 mote of amine and 50 inl . of benzenc (or xylene) was vigorously stirred and heated under reflux in a Dean-Stark apparatus until the theoretical water of reaction had been obtaned. The benzene solntion was filtered (charcoal), the benzene removed and the residne chissulved in ehloroform. Following a washing with dilute hydrochloric acid and water, the choroform was removed and the product recrystallized or distillect.

The following compounds in Table 1 were prepared using 1 his procedure: $21,28,30,34,36,38,44,50,53,24,5(6,5 i$, 63,118 and 140 .
Method C. - A mixture of 0.1 mokle of lacticle (or polyglycolide) and 0.15 mole of amine was maintaned at $200-210^{\circ}$ for 18 hours. When cool, the residue was processed as for method B to give the product.

These compounds were prepared by this method: 32 , $111,113,114$ and 116 . Compound 16 was prepared using this procedure in 86% yield, m.p. $74-66^{\circ}$.
p-Carboxyglycolanilide (Compound 59).-.A mixture of 80) g. (0.50 mole) of sodium p-aminobenzoate and 97 g . (excess) of cthyl glycolate was heated for 20 hours in an oil-bath maintained at 110°. When cool, after trituration with 500 mil. of acetone, there was obtained 92 g . (85%) of the sorlium salt of the product. To obtain the free acid, 44 g . of the sodinm salt was dissolved in 700 ml . of boiling water, $1,5 \mathrm{ml}$.
(22) Descriptive data shown in the table are not herein reproduced.
of concentrated hydrochloric acid was added, and the product crystallized; 31 g . (66%), m.p. $242-243^{\circ}$.

Compound 139 was obtained in a similar manner.
p-Bromoglycolanilide (Compound 46).-A solution of $10.0 \mathrm{~g} .(0.066 \mathrm{~mole})$ of glycolanilide (compound 26) in 125 ml . of water was maintained at 70° while treated under vigorous stirring with bromine water until a slight excess of bromine remained. The excess bromine was removed with sodium bisulfite and the product separated: $14.3 \mathrm{~g} .(94 \%)$, m.p. 169-171 ${ }^{\circ}$.

Compound 126 was prepared in a similar manner.
N - β-Phenethyl- $d l$-pantoamide was prepared by the method of Shive and Snell, ${ }^{23}$ in 82% vield, mi.p. 92-93 ${ }^{\circ}$ (ethyl ace-tate-hexane).
\mathbf{N}-Benzyl-dl-pantoamide was prepared in the same manner in 74% yield, m,p. $79-81^{\circ}$ (etlyy acetate-hexane).

Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \lambda \mathrm{O}_{3}: \mathrm{C}, 65.8 ; \mathrm{H}, 8.1$. Found: C, 66.2; H, 7.9 .

N-Isobutyl- γ-hydroxybutyramide.-A solution of 20 g . (0.232 mole) of γ-butyrolactone and 20 g . (0.273 mole) of isobutylamine was heated slowly to $95-100^{\circ}$ and maintained at that temperature for 3 hours. Volatiles were removed at $100^{\circ}(0.2 \mathrm{~mm}$.). The yield of residue was 36.5 g. (100%) and the $p \mathrm{H}$ of an aqueous solution was about 5 . There were indications that the material decomposes on distillation and the analysis was run on the residue.

Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{2}: \mathrm{C}, 60.4 ; \mathrm{H}, 10.8 ; \mathrm{N}, 8.8$. Found: C, 60.2; H, 10.9; N,8.7.

N-Isobutyl- γ-hydroxyvaleramide was prepared as above using γ-valerolactone.
(23) W. Shive and E. E. Snell, J. Biol. Chem., 160, 287 (1945); m.p. $90-91^{\circ}$.

Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}, 62.4 ; \mathrm{H}, 11.1 ; \mathrm{N}, 8.1$. Found: C, 62.7; H, 11.4; N,7.9.

Carbonate Esters of α-Hydroxyamides (General Proce-dure).-To a solution of 0.1 mole of the α-hydroxyamide in 10 ml . of pyridine and 60 ml . of acetonitrile, 0.11 mole of the alkyl (or haloalkyl) chloroformate was added slowly with continued stirring, and cooling (below 15°). After storage at 20° for 2 hours, the reaction mixture was transferred to an open dish and the volatiles evaporated. The solid residue was triturated with dilute hydrochloric acid, then water, filtered, dried and recrystallized.

Under these reaction conditions the attempted preparation of carbonate esters of the α-hydroxy-isobutyramides failed and the reactant amide was recovered.
\mathbf{N}, \mathbf{N}-Tetramethylenecarbamate of p-Bromoglycolanilide (Compound 49).-To 1.0 g . (0.003 mole) of compound 48 in 10 ml . of acetone was added 1.0 ml . of pyrrolidine and the slowly darkening solution stored at 20° for 20 hours. The acetone was removed, the residue was dissolved in benzene and washed with dilute hydrochloric acid, then water. The benzene solution was filtered (charcoal), the benzene removed, and the residue, granulated under hexane, gave 0.75 g . of product which was recrystallized.

Acknowledgment.-The authors are indebted to Dr. G. Ungar and his staff for the pharmacological results herein reported, to E. Roskin, J. Hinchen and F. Testa for technical assistance and to M. Blitz and his associates for the ultraviolet absorption data.

Yonkers 1, N. Y.

COMMUNICATIONS TO THE EDITOR

A BORON-CONTAINING PURINE ANALOG

Sir:

The preparation of boron compounds which might be of use in the treatment of cancer is of current interest. ${ }^{1}$ An obvious class of such compounds would be purine analogs containing boron in the ring. We wish to report the first preparation of such a compound (I).

II

III
The possibility of preparing stable compounds of this type was indicated by recent syntheses of heterocyclic boron compounds, in particular (II), which seemed to show aromatic properties. ${ }^{2}$ In an extension of this work we first prepared the quinazolone analog (III) from 0 -aminobenzamide, either with phenylboron dichloride in benzene (20% yield), or by heating with dibutyl phenylboronate and removing butanol (63% yield). (III) crystallized from benzene in small plates, m.p. 210-211 ${ }^{\circ}$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OB}: \mathrm{C}, 70.27 ; \mathrm{H}, 4.95$; N, 12.61; B, 5.0; mol. wt., 222. Found: C, 70.22 ; H, $4.86 ; \mathrm{N}, 12.68$; B, 5.1 ; mol. wt., 213. Solutions of (III) in ethanol showed an ultraviolet spectrum with peaks at $260 \mathrm{~m} \mu(\log \epsilon, 3.84)$ and 314 $\mathrm{m} \mu(\log \epsilon, 3.4)$. The infrared spectrum of the solid
(1) E. Nyilas and A. H. Soloway, This Journal, 81, 2681 (1959). (2) M. J. S. Dewar, V. P. Kubba and R. Pettit, J. Chem. Soc., 3076 (1958).
showed the presence of a CO group, but not OH , supporting the lactam formulation (III). The alcoholic solution of (III) was not stable; after a few hours the ultraviolet spectrum became identical with that of a mixture of o-aminobenzamide and phenylboronic anhydride.

Analogous condensation of 4-amino-1-methyl-5imidazolecarboxamide ${ }^{3}$ with dibutyl phenylboronate gave a solid (62% yield) which appeared to be the purine analog (I). It crystallized with difficulty from ethanol and sublimed without melting at ca. 300°. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{OB}$: C, 58.41 ; H, 4.87; N, 24.78; B, 4.9. Found: C, $58.40 ; \mathrm{H}, 4.78 ; \mathrm{N}, 24.66 ; \mathrm{B}, 4.9$. Owing to the insolubility of the connpound its molecular weight could not be determined. For the same reason the ultraviolet spectruni could be studied only in alcohol, where under all conditions it was identical with that of an equinolecular mixture of the innidazolecarboxamide and phenylboronic anhydride. The structure of (I) is established by its method of preparation, analogy with (III), analysis, and infrared spectrum (different from that of a mixture of the imidazolecarboxamide and phenylboronic anhydride, notably in the loss of the NH_{2} and BO bands).

The solvolysis of (I) is reversible. On mixing concentrated alcoholic solutions of the imidazole carboxamide and phenylboronic anhydride (effectively diethyl phenylboronate), (I) crystallized in 97% yield. This novel synthesis was extended to (II) (35% yield) and (III) (82% yield).
(3) J. Sarasin and W. E. Wegmann, Help. Chim. Acta, 7, 713 (1924).

[^0]: (1) (a) S. R. Safir, H. Dalalian, W. Fanshawe, K. Cyr, R. Lopresti, R. Williams, S. Upham, L. Goldman and S. Kushner, This Journal, 77, 4840 (1955); (b) H. Rosen, A. Blumenthal, P. N. Townsend, R. Tislow and J. Seifter, J. Pharmacol. Exp. Therap., 117, 488 (1956); (c) F. Ascoli Marchetti and M. L. Stein, Gazs. chim. ital., 84, 816 (1954); (d) C. Malen and J. R. Boissier, Bull. soc. chim. France, 923 (1956) ; (e) H. Martin and H. Zutter, U. S. Patent 2,773,899 (Dec. 11, 1956) ; (f) If. Martin and E. Habicht, U. S. Patent 2,848,364 (Aug. 19, 1958) ; (g) R. I. Hewitt and L. H. Taylor, U. S. Patent $2,877,154$ (Mar. 10, 1959).
 (2) (a) IH. McIlwain, "Chemotherapy and the Central Nervous System," Little, Brown and Co., Boston, Mass., 1957, p. 67; (b) F. A. Grunwald, U. S. Patent $2,764,613$ (Sept. 25, 1956).
 (3) For related work see S. L. Shapiro. I. M. Rose and I. Freedman, This Jotrnat. 81, 3083 (1959).

[^1]: (18) Evidence for this effect based on pharmacological data has been reported by S. L. Shapiro, I. M. Rose and L. Freedman, Thls Journal, 80, 6065 (1958).
 (19) W. F. Forbes and M. B. Sheratte, Can. J. Chem., 33, 1829 (1955).
 (20) L. P. Hammett, 'Physical Organic Chemistry,' McGraw-Hill Book Co., Inc., New York, N. Y., 1940, p. 188.
 (21) A. P. de Jonge and W. den Hertog, Rec. trav. chim., 75, $8 \overline{3}$ (1956), in a study of ultraviolet absorption spectra of fatty acid anilides have indicated that the only branched-chain acid anilide studied, isovaleranilide, had little influence on the spectra relative to that observed with the straight-chain anilides.

